
Efficient generation of simple polygons for
characterizing the shape of a set of points in

the plane

Matt Duckham1, Lars Kulik2, Mike Worboys3, Antony Galton4

1. Department of Geomatics
University of Melbourne, Victoria, 3010, Australia

2. Department of Computer Science and Software Engineering
University of Melbourne, Victoria, 3010, Australia

3. National Center for Geographic Information and Analysis
University of Maine, Orono, ME 04469, USA

4. Department of Computer Science
University of Exeter, Exeter EX4 4QF, UK

Abstract

This paper presents a simple, flexible, and efficient algorithm for constructing a
possibly non-convex, simple polygon that characterizes the shape of a set of input
points in the plane, termed a characteristic shape. The algorithm is based on the
Delaunay triangulation of the points. The shape produced by the algorithm is con-
trolled by a single normalized parameter, which can be used to generate a finite,
totally ordered family of related characteristic shapes, varying between the convex
hull at one extreme and a uniquely defined shape with minimum area. An optimal
O(n log n) algorithm for computing the shapes is presented. Characteristic shapes
possess a number of desirable properties, and the paper includes an empirical in-
vestigation of the shapes produced by the algorithm. This investigation provides
experimental evidence that with appropriate parameterization the algorithm is able
to accurately characterize the shape of a wide range of different point distributions
and densities. The experiments detail the effects of changing parameter values and
provide an indication of some “good” parameter values to use in certain circum-
stances.

Email address: mduckham@unimelb.edu.au (Matt Duckham1, Lars Kulik2, Mike
Worboys3, Antony Galton4).

URL: www.duckham.org (Matt Duckham1, Lars Kulik2, Mike Worboys3,
Antony Galton4).

Preprint submitted to Elsevier 11 January 2008

1 Introduction

The construction of convex hulls is a fundamental operation in computational
geometry. In the Cartesian plane, the convex hull of a set of points S is the
smallest convex polygon which contains all points in S. However, for sets of
points with a pronounced non-convex distribution the convex hull can never
provide good characterization of that distribution.

In this paper we present an algorithm for building “non-convex hulls.” The
algorithm is as efficient as an optimal convex hull algorithm, O(n log n) com-
putation time for n points. For a finite set of input points P , the algorithm
produces a simple, possibly non-convex polygon that contains all the points in
P and is contained within and possibly equal to the convex hull. We refer to
the polygons produced by the algorithm as “characteristic shapes” or simply
χ (chi) shapes.

Two features of our characteristic shapes are worth highlighting at this point.
First, while there exists only one convex hull for a set of points there can
be many different characteristic shapes. There is no “correct” characteristic
shape. We argue that in many cases the algorithm yields a better characteriza-
tion of distribution of a set of points than the convex hull. To illustrate, figure
1 shows a gallery of convex and characteristic shapes for some example point
sets with clearly non-convex distributions. However, deciding precisely what
constitutes a “better characterization” of the distribution of a set of points is
as much a matter for human cognition and preference as for computational
geometry. Despite this inherent underspecification in the problem statement,
our contention is that the characteristic shapes produced by our algorithm
are useful. Further, this paper explores experimentally some of the attributes
of a shape which may constitute “better” or “worse” characterizations of the
distribution of a set of points, and proposes some natural choices for parame-
terizing the characteristic shape algorithm in a way that generates a uniquely
defined result.

Second, characteristic shapes are simple (Jordan) polygons, homeomorphic to
the closed unit disk. Thus, characteristic shapes are simply connected (all of
one piece containing no holes nor islands) and regular. In some cases, how-
ever, the distribution of a set of points may be best characterized by multiple
(possibly non-convex) polygons enclosing disconnected regions of space (e.g.,
an “i” or “=”shape). In this paper we do not consider directly such cases,
and are primarily concerned with cases where the distribution of points can
be adequately characterized as a single simple polygon. However, it is possible
to deal with such cases indirectly by first preprocessing the input point set to
partition it into subsets, each of which may be adequately characterized by a
single simple polygon, explored briefly in section 6.4. In other cases where the

2

The convex hull of P Point set P A χ-shape of P

Fig. 1. Gallery of convex hulls and χ-shapes for several point sets in the plane

distribution of points is best characterized using a polygon containing one or
more holes (e.g., an “8” shape), the characteristic shape algorithm presented
in this paper will not be able to generate these holes. It will, however, still
successfully generate a characterization of the external edge of such a region.

3

2 Related work

An early, and influential, attempt to characterize the shape of a set of points is
due to [1], which introduced a construction known as “α-shape” as a general-
ization of the convex hull. For a finite set P of points in the plane, the “α-hull”
for α 6= 0 is the intersection of all closed discs of radius 1/α containing all the
points of P (where for negative values of α a closed disk of radius, 1/α is inter-
preted as the complement of an open disk of radius −1/α). As α approaches
0, the α-hull approaches the ordinary convex hull, and therefore the 0-hull is
stipulated to be the convex hull. The α-shape is a straight-line graph (usually
a polygon) derived in a straightforward manner from the α-hull. When α = 0,
this is the convex hull, and for large negative values of α it is P itself.

A related notion, A-shape, was introduced in [2]. Given a finite set of points P ,
and a set A (which evidently needs to be disjoint from P , although the authors
do not specify this), we can define the A-shape of P by first constructing the
Voronoi diagram forA∪P and then joining together any pair of points p, q ∈ P
whose Voronoi cells both border each other and border some common Voronoi
cell containing a point ofA. The edges pq belong to the Delaunay triangulation
of A∪ P : they are the “A-exposed” edges of the triangulation. An important
issue discussed in the paper is how to choose A so that the A-shape of P
is “adequate.” In a later paper [3], the A-shape is used as the basis for an
“onion-peeling” method, by analogy with the popular convex onion-peeling
method for organizing a set of points and extracting a “central” embedded
convex shape from them [4].

Two rather different constructs, r-shape and s-shape, were defined in [5] as
follows. The initial set of points P is assumed to be a dot pattern, that is, a
planar point set whose elements are “clearly visible as well as fairly densely and
more or less evenly distributed.” To obtain the s-shape, the plane is partitioned
into a lattice of square cells of side-length s. The s-shape is simply the union
of lattice cells containing points of P . The authors suggest a procedure for
optimizing the value of s so that the s-shape best approximates the perceived
shape of the dot pattern. For the r-shape, they first construct the union of
all disks of radius r centered on points of P . For points p, q ∈ P , the edge
pq is selected if and only if the boundaries of the disks centered on p and q
intersect in a point which lies on the boundary of the union of all the disks.
The r-shape of P is the union of the selected edges, and the authors show that
this can be computed in time O(n), where n is the cardinality of P . They note
that the r-shape is a subgraph of the α-shape in the sense of [1]. Regarding
the selection of r, they note that “to get a perceptually acceptable shape, a
suitable value of r should be chosen, and there is no closed form solution to
this problem,” and that moreover “‘perceptual structure’ of P ... will vary
from one person to another to a small extent.”

4

An alternative method, also designed to be applied to dot patterns, was pro-
posed by [6]. This procedure starts by constructing the convex hull of the
points, and then uses a “split and merge” procedure to successively insert ex-
tra edges or smooth over zigzags. The splitting procedure results in a highly
jagged outline, which is then made smoother by the merging procedure. The
resulting outline gives an approximation to the perceived shape of the dot pat-
tern. The complexity of the procedure is limited by the complexity of finding
the initial convex hull, O(n log n).

The use of Voronoi diagrams for constructing regions from point-sets has also
been advocated in the context of GIS [7]. In this context, the set P consists
of points known to be in a certain region, for which an approximation to
the boundary is required. It is assumed that in addition to P another point-
set P ′ is given, consisting of points known to lie outside the region to be
approximated. From the Voronoi diagram for P∪P ′, the method simply selects
the union of the Voronoi cells containing points of P . The resulting shape
differs from the characteristic shapes constructed in this paper in that the
original point-set lies entirely in its interior. Depending on one’s purposes,
this feature may either be desirable or undesirable.

A similar method [8] is based on Delaunay triangulations. Given sets P and
P ′ as before, the Delaunay triangulation of P ∪P ′ is constructed, and then the
midpoint of every edge which joins a point in P to a point in P ′ is selected. The
final region is produced by joining all pairs of selected midpoints belonging to
edges of the same triangle.

In all these cases, as with the method we describe in this paper, the goal is
to generate a region which in some sense “covers” the given set of points,
some of which may end up on the boundary of the region, others in its in-
terior. A somewhat different, though related problem, is to generate a region
such that all of the points lie on its boundary. A typical application, in three
dimensions, works with points which are sampled from the surface of some
three-dimensional object, the intention being to reconstruct the entire surface
from the samples. Methods which have been used for this problem include the
Power Crust method in [9, 10], which first generates a finite union of balls as
an approximation to the medial axis transform of the object, and then derives
from this a piecewise-linear approximation to the object’s surface—the power
crust. The balls chosen are a subset of the Voronoi balls for the set of sam-
ples. An alternative approach to the same problem, based on the Delaunay
tessellation rather than the Voronoi, is given in [11].

Given that a considerable amount of research has been done on finding re-
gions corresponding to point-sets, and much of this research takes convex
hulls, Voronoi diagrams, or Delaunay triangulations as its starting point, it is
perhaps surprising that our Delaunay-based method, though extremely simple

5

in conception, does not appear to have been proposed before. With so many
different methods in existence, all giving different results, there is a clear need
for some systematic comparison of the methods and evaluation of their relative
merits in different application contexts. Some initial work suggesting criteria
upon which to base such a systematic comparison is given in [12]. However,
in the remainder of this paper we concentrate primarily on the presentation
of our algorithm and its properties and the empirical evaluation of the algo-
rithm’s performance.

3 The χ (chi) algorithm

For a finite set of at least three points in the Cartesian plane P ⊂ R
2, the

characteristic shape algorithm yields a possibly non-convex area with a shape
that “characterizes” the distribution of the input point set. All the sets under
consideration in this paper are sets of points in the Cartesian plane R

2, and
these sets are assumed to be finite. The χ-shape produced by the algorithm
has the properties that:

(1) it is a simple polygon;
(2) it contains all the points of P ; and
(3) it bounds an area contained within and possibly equal to the convex hull

of the points of P .

The χ-shape algorithm is based on “shaving” exterior edges (edges that bound
only one triangle) from a triangulation of the input point set in order of the
length of edges and subject to a regularity constraint. The algorithm itself
has a time complexity of O(n log n), where n is the number of input points.
Although the algorithm is presented in detail in the following section, it can
be summarized as comprising the following steps for an input point set P and
a length parameter l:

(1) Generate the Delaunay triangulation of the set of input points P ;
(2) Remove the longest exterior edge from the triangulation such that:

(a) the edge to be removed is longer than the length parameter l; and
(b) the exterior edges of the resulting triangulation form the boundary

of a simple polygon;
(3) Repeat 2. as long as there are more edges to be removed
(4) Return the polygon formed by the exterior edges of the triangulation

In exploring the algorithm more carefully, we begin with some preliminary
material on the underlying structure for the triangulation, a combinatorial
map (3.1). Then we present the algorithm itself (3.2). In the next section (4)
we discuss the properties of the algorithm and the χ-shapes, introduced above,

6

in more detail.

3.1 Combinatorial maps

The χ algorithm is based on an explicit orientation of the edges in the trian-
gulation around a given vertex. The orientation of edges in a graph can be
represented by an oriented combinatorial map. Introduced in [13], combina-
torial maps are well-known in computational geometry, and are the formal
basis of several common data structures, such as the winged-edge and half-
edge data structures [14,15]. The following definitions build on the functional
specification of combinatorial maps given in [16].

Definition 1 A (2-dimensional) oriented combinatorial map, or just map,

M, is a triple 〈D, Θ0, Θ1〉, where D is a finite set of elements, called darts,
Θ0 is an involutory bijection 1 on D, and Θ1 is a bijection on D. We may also

assume that Θ0 has no fixed points.

Θ0 partitions the set of darts into sets of pairs of darts, and each such pair is
called an edge of map M. Each of the cycles of Θ1 represents a vertex of M.
It is straightforward to use Θ0 and Θ1 to calculate the ordering of edges round
faces in a combinatorial map. The cycles of the composition Θ0Θ1 gives the
ordering of darts, and converting the darts to their (unique) associated edges
gives the ordering of edges. In general, a face of map M is a cycle of edges
associated with a cycle of darts in Θ0Θ1. Alternatively, focusing on vertices
rather than edges, we can consider the cycle of vertices (uniquely) associated
with the edges to be the face.

To illustrate, figure 2 provides an example of a triangulation where:

• D = {1, 2, 3, 4, 5, ..., 28};
• Θ0 = (1 13)(2 3)(4 12)(5 16)(6 22)(7 8)... (in cyclic notation); and
• Θ1 = (1 2)(3 4 5 6 7)(8 9 10)(11 12 13)... (in cyclic notation).

Let E = E(M) be the set of edges, F = F (M) be the set of faces, and
V = V (M) be the set of vertices ofM. The surjective functions edge : D → E
and vertex : D → V provide the edge and vertex which contains a dart,
respectively (i.e., edge : d 7→ {d, Θ0d} and vertex : d 7→ v ∈ V such that d is
a dart in v).

Definition 2 Let M be a given combinatorial map. A triangle in M is a

face in F = F (M) that is a 3-cycle of edges associated with a 3-cycle of darts

1 A bijection is a function that is both injective (one-to-one) and surjective (onto).
An involution is a function that is its own inverse, e.g. Θ0(Θ0(x)) = x.

7

4

1

2

3
7

5

11

109

8

6

18
17 16

2322 21

20

19

28
27

26

25

24

15

14

13
12

Fig. 2. Example triangulation structured as a combinatorial map

in Θ0Θ1. Alternatively and equivalently, a triangle is a 3-cycle of vertices

associated with a 3-cycle of darts in Θ0Θ1.

Definition 3 A triangulation ∆ is a combinatorial map which has the prop-

erty that every edge in E belongs to either one or two triangles.

From now on we will work with triangulations rather than more general com-
binatorial maps. Suppose from now on that our underlying triangulation is
∆.

Definition 4 An interior edge of ∆ is an edge that belongs to two triangles

in ∆. A boundary edge of ∆ is an edge that belongs to exactly one triangle

in ∆. The edge-interior of ∆ is the collection of its interior edges. The edge-
boundary of ∆ is the collection of its boundary edges.

Definition 5 An interior vertex of ∆ is a vertex containing no boundary

edges. A boundary vertex of region ∆ is a vertex containing boundary edges.

The vertex-interior of ∆ is the collection of its interior vertices. The vertex-
boundary of ∆ is the collection of its boundary vertices.

Definition 6 A triangle is an interior triangle of ∆ if all its edges are interior

edges of ∆. A triangle is a boundary triangle of ∆ if at least one of its edges

is a boundary edge of ∆. The triangle-interior of ∆ is the collection of interior

triangles of ∆. The triangle-boundary of ∆ is the collection of its boundary

triangles.

Definition 7 A triangulation ∆ is regular if each boundary vertex of ∆ con-

tains exactly two boundary edges of R.

Definition 8 A planar embedding of ∆ is a function f : V (∆) → R
2 from

the set of vertices in ∆ to points in the plane. The length of an edge ||e|| is the

Euclidean distance δ(a, b) where a = vertex (d), b = vertex (Θ0(d)), and d ∈ e

8

is a dart of e.

3.2 Algorithm

The χ algorithm has two components. The main component (Algorithm 1)
takes a set of points and a non-negative length parameter l as input. Algorithm
1 constructs the Delaunay triangulation of the input point set (line 1) and the
list of boundary edges B sorted in descending order of edge length (lines 1–1).
Determining whether a particular edge is a boundary edge can be achieved
in constant time by checking for 3-cycles of darts in the combinatorial map,
as shown by the “e-boundary” function e-∂ : E(∆)→ {true, false} defined as
follows:

e-∂ : {d1, d2} 7→

false if Θ0Θ1Θ0Θ1Θ0Θ1d1 = d1 and

Θ0Θ1Θ0Θ1Θ0Θ1d2 = d2

true otherwise

(1)

Determining whether a particular vertex is a boundary vertex could be achieved
in a similar way, by checking whether any of the edges incident with that ver-
tex are boundary edges. However, because a vertex may have any number of
incident edges, using this approach can increase the computational complexity
of the χ algorithm. Instead, lines 1–1 in Algorithm 1 pre-process the set of
edges to initialize a “v-boundary” function v-∂ : V (∆)→ {true, false}, which
determines whether a vertex is a boundary vertex or not.

With all the preprocessing completed, the algorithm then cycles through each
boundary edge in order (longest first, lines 1–1). At each iteration the longest
boundary edge is removed (line 1) from B. Additionally, this edge will be
removed from the triangulation if:

(1) the resulting triangulation is regular; and
(2) the edge length is at least l (line 1).

When an edge e is removed, the two new boundary edges that are revealed
by the removal of e are added to the list of boundary edges B, respecting the
edge-length ordering of B (line 1). Additionally, the v-∂ function is updated
to store the boundary vertex revealed by the removed edge (1). The boundary
edges (and so vertex) that are revealed by the removal of an edge can be
found using the combinatorial map. For this purpose we define the function

9

7

8

reveal(7) = Q 7 = 60 0 0Q Q Q Q1 1

22 21

reveal(8) = 8 = 9Q1

Fig. 3. Darts belonging to the edge-interior of a boundary triangle accessed using
the reveal function

reveal : D → D as follows.

reveal : d 7→

Θ1d if Θ0Θ1Θ0Θ1Θ0Θ1d = d

Θ0Θ1Θ0Θ1Θ0d otherwise
(2)

Figure 3 helps to explain the idea behind Equation 2. The reveal function
applied to dart d maps to the dart d′ ∈ vertex (d) such that d′ is a dart of
the edge which will be revealed at the boundary if e were removed from the
triangulation. The algorithm terminates when B is empty.

Algorithm 2 presents an efficient test to decide whether or not the regularity
constraint in line 1 is satisfied. Originally applied in a completely different
context, algorithm 2 is derived from an idea first developed in [17] as part
of their algorithm for detecting topological changes in regions monitored by
geosensor networks.

Since at each iteration only one edge is removed, the effects on the regularity
of the triangulation of removing this edge can be checked by examining the
third vertex of the triangle containing this edge. For example, figure 4 shows
the same regular triangulation as figure 2. Removing edge ab will result in
a regular triangulation, because of the interior vertex d of the triangle abd.
Conversely removing edge bc will not result in a regular triangulation, because
of the boundary vertex e of the triangle bcd.

Given that the input triangulation, the Delaunay triangulation, is regular (the
boundary of the Delaunay triangulation is the convex hull of the input point
set), we can infer that the output triangulation is also regular, as long as the
single edge removal does not introduce any local irregularities. Algorithm 2 de-
scribes the procedure for checking regularity, requiring a regular triangulation
and an edge of that triangulation as input. The algorithm returns “true” if the
triangulation resulting from removing that edge is regular, “false” otherwise.

10

Algorithm 1: Characteristic shape algorithm: χ(P, l)

Data: Set of points P ⊂ R× R; length l ∈ R

Result: Characteristic shape χ(P, l)
Construct the Delaunay triangulation ∆ of P ;1.1

Construct the list B of boundary edges, containing the set1.2

{e ∈ E(∆)|e-∂(e) = true};
Sort the list B in descending order of edge length;1.3

Initialize the function v-∂ : V (∆)→ {true, false}, v-∂ : v 7→ false;1.4

foreach e = (d1, d2) ∈ E(∆) do1.5

if e-∂(e) then1.6

Set v-∂ : vertex (d1) 7→ true;1.7

Set v-∂ : vertex (d2) 7→ true;1.8

while B is not empty do1.9

Set e← head(B);1.10

Remove e from B;1.11

if ||e|| > l and Regular(∆, e) then1.12

Remove edge e from triangulation ∆;1.13

Insert the two edges edge(reveal(d1)) and edge(reveal(d2)) into B in1.14

order of edge length, where d1 and d2 are the two darts in e;
Set v-∂ : vertex (reveal(d1)) 7→ true;1.15

return the polygon formed by the set of boundary edges of triangulation ∆;1.16

a

b

c

d

e

Regular(trueD,) =ab

Regular(falseD,) =bc

Fig. 4. Regularity constraint on removing triangulation edges

4 Properties

The properties of the χ algorithm and the characteristic shape have been
introduced at the beginning of section 3. In this section we explore these
properties in more detail.

11

Algorithm 2: Regularity algorithm: Regular(∆, e)

Data: Regular triangulation ∆, edge e of ∆
Result: True if ∆− e is regular, false otherwise
if e-∂(e) = true then2.1

Set v to be the (unique) vertex v = vertex (Θ0(reveal(d))) for an arbitrary2.2

dart d ∈ e;
if v-∂(v) = false then2.3

return true;2.4

return false;2.5

4.1 Algorithmic properties

In this section we show that the time complexity of Algorithm 1 is O(n log n),
where n is the cardinality of the input point set. The two preprocessing steps
of creating the Delaunay triangulation (line 1) and sorting the list of boundary
edges (line 1) each require O(n log n) time:

• It is a standard result in computational geometry that the Delaunay trian-
gulation (line 1) can be computed in O(n log n) time (see [18]).
• By Euler’s formula, the total number of edges in a planar triangulation ∆

is linearly related to the number of vertices (if E is the number of edges,
VB is the number of boundary vertices and VI is the number of interior
vertices, then E = 2VB + 3VI − 3). Thus, the number of boundary edges
in the sorted list B is also linearly proportional to the number of vertices.
Using any standard sorting algorithm results in a sorting step of O(n log n).

Finding the set of boundary edges (line 1) and initializing the v-∂ function
(lines 1–1) each require a single pass through the entire list of edges E, which
as discussed above is linearly proportional to the number of vertices. Hence,
these two preprocessing steps each have time complexity O(n).

The complexity of the core algorithm loop (lines 1–1) is linear, O(n). The
critical observations in understanding this result are to note that:

(1) at any iteration, a boundary edge found to belong to a triangle with
no interior vertices (i.e., one resulting in an irregular triangulation if
removed) can never subsequently become a candidate for removal; and

(2) every time a boundary edge is removed from the triangulation, two new
edges must be added to the list of boundary edges.

As a consequence, at each iteration one edge is discarded from B, with possibly
two new edges being added to B. Either the edge will be removed, and so by
2 above two new edges added to the list B; or its removal would result in an

12

irregular triangulation, and so by 1 above it need not be checked again; or
its length is less than l, in which case it, and all remaining (shorter) edges
in B, need not be checked again. The maximum number of new boundary
edges that could possibly be added to B in the course of the algorithm is
clearly fewer than the total number of interior edges. So in the worst case the
algorithm must iterate fewer than |E| times. As we have already seen, in a
planar triangulation the number of edges |E| is linearly related to the number
of input vertices n.

Note also that checking whether removing an edge will result in a regular
triangulation (line 1 and Algorithm 2) can be achieved in constant time. For
the boundary edge in question, it is only necessary to look up whether the
third vertex of the boundary triangle containing that edge is an interior vertex.
This third vertex can be found in constant time from the combinatorial map.
Consequently, the overall time complexity of the χ algorithm is dominated by
the preprocessing steps, and is O(n log n).

Finally, if the length parameter l is set to zero, then the algorithm will run
through every possible χ-shape for a given point set P . Thus, by modifying
the algorithm slightly to store new χ-shapes at each iteration allows the entire
family of χ-shapes for P to be generated in O(n log n) time.

4.2 Characteristic shape properties

A polygon X is a closed planar path composed of a finite number of sequential
line segments. The straight line segments that make up X are called its edges
and the points where the sides meet are the vertices. Polygon X is said to
be simple if the only points of the plane belonging to two polygon edges of
X are the polygon vertices of X. Clearly, so long as the points are not all
collinear, the initial triangulation is regular, and hence yields a shape that is
simple (the convex hull). Each iteration of the algorithm preserves regularity. A
regular triangulation must have a simple polygon boundary, by the definition
of regularity in section 3.1. Thus, the χ-shape must also be simple.

The initial triangulation contains all the elements of initial point set as ver-
tices, thus initially all elements of the point set must be incident with at least
two edges. Since the algorithm removes at most one edge from the triangula-
tion at each iteration, an element of the input point set can only lie outside the
characteristic shape if first at some iteration it was a vertex incident with only
one edge. Such a situation is prohibited by the regularity constraint. Thus, we
infer that the entire input point set must be vertices of the final triangulation,
and so contained within the characteristic shape.

Finally, the area bounded by the characteristic shape must be contained within

13

and possibly equal to the convex hull. In the extreme case where no edges are
removed, then the algorithm returns the polygon boundary of the convex hull.
Every iteration of the algorithm that removes an edge from the triangulation
will exclude those parts of the convex hull that were contained within the
triangle bounded by the deleted edge.

5 Parameterization

The shape of the characteristic shape produced by the algorithm described
above is parameterized using the length l. Because the algorithm runs through
boundary edges in descending order, any edge that is removed for a parameter
l will also be removed for a smaller parameter l′ < l. Thus, for any set of input
points P and length parameters l′ ≤ l, it follows that the characteristic shape
of P with parameter l′ is contained within the characteristic shape of P with
parameter l, i.e., l′ ≤ l↔ χ(P, l′) ⊆ χ(P, l).

5.1 Normalized length parameters

The parameter l can potentially take the value of any non-negative real num-
ber. However, it is more convenient to normalize the parameter with respect
to a particular set of points P by using the maximum and minimum edge
lengths of the Delaunay triangulation of P . Increasing l beyond the maximum
edge length of the Delaunay triangulation cannot reduce the number of edges
that will be removed (which will be zero anyway). Decreasing l beyond the
minimum edge length of the Delaunay triangulation cannot increase the num-
ber of edges that will be removed. Thus, for a set of points P we define two
lengths maxP and minP as follows:

maxP ≡ max({||e|| | e ∈ E(∆P)})

minP ≡ min({||e|| | e ∈ E(∆P)})

Given these two lengths, we can now define a normalized length parameter
λP ∈ [0, 1] as follows:

λP =

1 if l ≥ maxP

l−minP

maxP − minP

if minP ≤ l < maxP

0 if l < minP

14

Figure 5 shows an example of all the different characteristic shapes produced
by different normalized λP parameters for a sparse set of points P roughly in
the shape of the letter “C”. To help illustrate the effects of the λP parameter,
figure 5 shows the full triangulation associated with each λP value. However,
it should be noted that the χ algorithm only returns the polygonal boundary
for the triangulation.

5.2 Choices of λP

As shown above, the choice of λP has a determining effect on the precise shape
obtained from the characteristic shape algorithm. One way of choosing a value
for λP , then, is to try a range of different values and then a posteriori select
the value that produces a shape that best fits some desired criteria (such as
area-perimeter ratio). However, there are a range of possible a priori choices
for values of λP .

Two natural choices are to set λP to an extreme value, zero or one. Setting
λP = 1 means that no edges will be removed from the Delaunay triangulation,
so the resulting polygon will be the convex hull (Figure 5.a). It is desirable
that the χ-shape algorithm degrades gracefully to yield the convex hull at one
extreme, but clearly the aim of the χ-shape algorithm is to provide a better
characterization of shape than the convex hull. Setting λP = 0 means that all
edges that can be removed subject to the regularity constraint will be removed
(Figure 5.l). However, running the χ algorithm to its conclusion in this way
often creates polygons that are eroded beyond the point where they provide
a desirable characterization of the shape.

Given that extreme values of λP tend to lead to unsatisfactory χ-shapes, it
would be useful to be able to define a priori an intermediate value for the
parameter, 0 < λP < 1, that could adapt to a range of different point sets
to produce acceptable shape characterizations. For example, one possibility
is to use the length of the longest edge in the minimum spanning tree of the
Delaunay triangulation (which we coined the “max-MST” edge length). The
minimum spanning tree is the subgraph of the Delaunay triangulation with
the smallest total edge length that connects all the vertices of the triangula-
tion. In the case of the point distribution in figure 5 the max-MST edge length
corresponded to a λP value of 0.1, yielding the shape in figure 5.l. Another
possibility is to find the shortest edge for each triangle in the Delaunay trian-
gulation, and use the maximum length of all these shortest edges (which we
termed the “max-min ∆” edge length). For the point distribution in figure 5,
the max-min ∆ edge length corresponded to a λP value of 0.56, yielding the
shape in figure 5.e.

15

a. 0.77 < λP ≤ 1.00 b. 0.73 < λP ≤ 0.77 c. 0.67 < λP ≤ 0.73

d. 0.60 < λP ≤ 0.67 e. 0.51 < λP ≤ 0.60 f. 0.39 < λP ≤ 0.51

g. 0.38 < λP ≤ 0.39 h. 0.29 < λP ≤ 0.38 i. 0.27 < λP ≤ 0.29

j. 0.23 < λP ≤ 0.27 k. 0.20 < λP ≤ 0.23 l. 0.00 < λP ≤ 0.20

Fig. 5. Examples of varying λP parameter for characteristic shape algorithm

Initial investigations using these two possibilities revealed that while one or
other sometimes provided a satisfactory result, neither could be be relied upon
to consistently provide a “good” characterization of shape (as illustrated by
Figure 5, where neither parameter yields a shape that closely approximates the

16

“C” shape of the original point distribution). Potentially, there innumerable
other possible a priori choices of λP that might be defined. For example,
an intermediate value of λP half-way between the max-MST and max-min
∆ values often, but not always, yielded satisfactory results. Ultimately, no a

priori method for choosing λP can be expected always to provide a “good”
characterization of the shape of a set of points.

6 Experimentation

In this section we investigate some of the empirical properties of the char-
acteristic shape algorithm. However, as asserted in section 1, in general the
question of what constitutes a “better” characterization of the shape of a set
of points is an underspecified problem to which there can be no single “cor-
rect” answer. Therefore, in the following experiments we generate randomized
point distributions with a well-defined shape (such as a letter of the alphabet
or a country of the world) and compare the χ-shape with that original shape.

The experiments that follow fall into three distinct categories. First, the ex-
periments examine the effects of varying the normalized length parameter λP

upon χ-shapes (6.1). Second, the effects of varying point densities upon the
optimal normalized length parameter are analyzed (6.2). Third, the effects of
increasing inhomogeneity in point distributions are tested (6.3). All the ex-
periments were conducted using a version of the χ algorithm implemented in
Java. This software utilizes the half-edge data structure to store and query
the triangulation efficiently. As highlighted above, this commonly-used data
structure is derived from the combinatorial map.

6.1 Parameterization

Section 5.2 suggested some natural choices for parameterizing the characteris-
tic shape algorithm using the normalized length λP . In this section we examine
more carefully the response of the algorithm to changes in normalized length.

To evaluate objectively the performance of the characteristic shape algorithm,
a series of experiments were conducted with point distributions of known
shapes. The χ-shapes generated using different normalized length parame-
ters were compared with the shapes of these input point distributions. Initial
experiments compared the ratio of the area of the characteristic shape to the
original shape of the point distribution. Using area is simple but does not pro-
vide a particularly good measure of closeness of the two shapes, since two very
different shapes can still have the same area. For this reason it is preferable

17

to use the area of the region enclosed between the boundaries of the original
shape and the corresponding characteristic shape, termed the L2 error norm.
The L2 error norm can be computed by finding area of the symmetric differ-
ence between and original region O and a χ-shape C as a proportion of the
total area of the χ-shape C (i.e., area((O−C)∪(C−O))

area(C)
). An L2 error norm of zero

means that not only are the areas of the two shapes equal, but also that their
boundaries are in complete agreement.

Figure 6 shows the variation in the L2 error norm for characteristic shapes
produced using a range of normalized length parameters for a number of known
point distributions. To compensate for differences in the absolute areas of the
different shapes, the figure shows the L2 error norm values as a proportion of
the total area of the original shape. The four different distributions used are
based on the shapes of the uppercase letters “C,” “F,” “G,” and “S.” These
letters were chosen for the figure because they exhibit a range of different
levels of sinuosity and angularity. However, the results are representative of
all the letter shapes tested (i.e., those can be represented as a simple polygon,
unlike lowercase “i” or uppercase “A”).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.2 0.4 0.6 0.8 1

Normalized length parameter

L
2

-n
o

rm
(a

s
a

p
ro

p
o

rt
io

n
o

f
to

ta
l
a

re
a

)

C

F

G

S

Fig. 6. Variation in characteristic shape accuracy with normalized length parameter
λ (letter shapes)

The letter shapes were generated using a sans serif font (Arial). The boundary
of each shape was approximated as a polygon using a number of evenly spaced
vertices connected by straight-line segments. Each shape was then filled with a
semi-random distribution of internal points, where each point must be greater
than a certain threshold distance d from any other points, but otherwise is
randomly positioned. Truly random distributions of points can have strongly

18

inhomogeneous densities, leading to the formation of clusters and holes which
mask the true shape of the letter itself. Hence, the semi-random distribution
was used for these initial experiments.

Together the polygon vertices and the internal points compose the input point
set. For each shape, 20 semi-random internal point sets were generated, ensur-
ing randomized, but reasonably evenly spaced input point set distributions.
Figure 6 shows the average area of these 20 distributions for each shape at
each of 21 normalized length parameters (0.0, 0.05, 0.1, ..., 1.0). Thus, fig-
ure 6 summarizes the properties of a total of 4 × 21 × 20 = 1680 different
characteristic shapes.

The curves in figure 6 exhibit progressive improvements the χ-shape’s approx-
imation of shape of the input point set, indicated by decreasing L2 error norm
value, as the normalized length parameter decreases from 1.0 (i.e., the convex
hull). Below a certain normalized length parameter, the algorithm begins to
“eat in” to the body of the shape, leading to a rapid increase in L2 error norms
as the normalized length parameter decreases from values around 0.05. The
response curves for the different figures also exhibit a number of pronounced
“steps.” These steps correspond to the removal of a small number of triangles
with relatively large areas from the triangulation (for example those that make
up the interior of the triangulated “C” shape, as in Figure 5).

All the shapes in figure 6 have response curves that reach a minimum L2 error
norm ratio of less than 0.03 (i.e., the total area of disagreement between the
characteristic shape and original shape is on average less than 3% of the total
area of the shape). However, even in the very worst cases (recall that each
data point in figure 6 represents an average of the characteristic shapes of 20
different randomized point distributions) all randomized point distributions
achieved a minimum L2 error norm ratio of less than 0.08 (8% of the total
shape area).

Figure 7 shows the same experiment as in figure 6, but repeated with rather
different shapes: the boundary shapes of four countries of the world (France,
Germany, Italy, Vietnam). Again, these shapes were chosen as providing a
range of sinuosity and elongation from amongst those countries with borders
that can be described as a simple polygon. The performance of the algorithm
for these country shapes is similar to the performance for the letter shapes. In
general there are fewer step-changes in figure 7 than 6. This is to be expected,
since basic geographical principles tend to favor roughly convex country shapes
without large cavities.

The minimum L2 error norm ratio achieved for each country shape was again
relatively low. The algorithm performed worst (higher L2 error norm) with
the shape of Vietnam. The boundary of Vietnam is the most elongated of the

19

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.2 0.4 0.6 0.8 1

Normalized length parameter

L
2

-n
o

rm
(a

s
a

p
ro

p
o

rt
io

n
o

f
to

ta
l
a

re
a

)

France

Germany

Italy

Vietnam

Fig. 7. Variation in characteristic shape accuracy with normalized length parameter
λ (country shapes)

countries tested, with a relatively small area to perimeter ratio. As a conse-
quence, the chance of boundary errors having a greater effect on the area error
is also greater. However, the minimum L2 error norm of 0.05 still represents
a relatively low figure when considering that the point sets themselves are
semi-random.

6.2 Effects of point density

The results in the previous section suggest that normalized length parameters
of around 0.05–0.2 often provide good characteristic shapes, since the L2 error
norm often reaches its minimum at around these normalized length parameter
values. However, all the shapes tested in the previous section used similar
densities of points: approximately 0.003 points per unit area. The unit area
for the experiments was a single screen pixel: in other words, all the point
sets used for experiments in the previous section filled their shapes using on
average 1 point occupying a region of approximately 18 × 18 pixels. We might
expect the optimal normalized length parameter (the parameter value that
corresponds to the lowest L2 error norm) to depend on the density of points
used, especially at lower point densities where the number of points used to
define the same shape is much lower.

To investigate this potential relationship, each of the four graphs in Figure 8
shows the average changes in optimal normalized length parameter across a

20

range of point densities for random point sets derived from the four shapes we
have already encountered (letters “S” and “F” and the countries Germany and
Vietnam). For each graph, the log of the density of the input point set (i.e.,
with lowest point density on the left-hand side and highest point density on the
right-hand side) is plotted against the optimal normalized length parameter,
averaged (using the median to minimize the impact of outliers) across five
randomized point sets. The point densities tested range from 0.0003 per unit
area (1 point occupying a region of approximately 57 × 57 pixels) to 0.007 (1
point occupying a region of approximately 12× 12 pixels). The most important
feature to note across all the graphs is that while the optimal length parameter
varies from shape to shape, it is relatively stable across all point densities.

0

0.05

0.1

0.15

0.2

0.25

-3.5 -3.3 -3.1 -2.9 -2.7 -2.5 -2.3 -2.1

Density of point set (log of points per unit area)

O
p

ti
m

a
l

n
o

rm
a
li

z
e
d

le
n

g
th

p
a
ra

m
e
te

r

0

0.05

0.1

0.15

0.2

0.25

-3.5 -3.3 -3.1 -2.9 -2.7 -2.5 -2.3 -2.1

Density of point set (log of points per unit area)

O
p

ti
m

a
l

n
o

rm
a
li

z
e
d

le
n

g
th

p
a
ra

m
e
te

r

a. Letter “S” b. Letter “F”

0

0.05

0.1

0.15

0.2

0.25

-3.5 -3.3 -3.1 -2.9 -2.7 -2.5 -2.3 -2.1

Density of point set (log of points per unit area)

O
p

ti
m

a
l

n
o

rm
a
li

z
e
d

le
n

g
th

p
a
ra

m
e
te

r

0

0.05

0.1

0.15

0.2

0.25

-3.5 -3.3 -3.1 -2.9 -2.7 -2.5 -2.3 -2.1

Density of point set (log of points per unit area)

O
p

ti
m

a
l

n
o

rm
a
li

z
e
d

le
n

g
th

p
a
ra

m
e
te

r

c. Germany d. Vietnam

Fig. 8. Effects of changing density of input point set on optimal normalized length
parameter

In some cases, the optimal value of the normalized length parameter is quite
sensitive to changes in density, and slight increases or decreases in the normal-
ized length parameter substantially increase the errors in shape. However, in
many cases, the optimal value is remarkably stable, and a range of normalized
length parameters provide near-optimal errors in shape. To represent this, the
“error” bar on each plotted point in figure 8 shows the range of normalized
length parameters that lead to an overall L2 error norm within 1% of the
lowest possible L2 error norm. Again, the graph shows the modal maximum

21

and modal minimum normalized length parameter averaged across each set of
5 repetitions. Those data points with narrower “error” bars are more sensi-
tive to changes in the precise normalized length parameter value; those with
wider “error” bars are less sensitive to changes in normalized length parameter
(thus, the term “error bars,” conventionally used to describe these features on
graphs, is a misnomer in this case, since we are representing stability rather
than error). For instance, for the highest densities of the “S” shape, normal-
ized length parameters from 0.02 to 0.24 yielded on average an L2 error norm
within 1% of the lowest possible error norm. Conversely, the complex, elon-
gated shape of Vietnam was much more sensitive to changes in normalized
length parameter, and a change in normalized length parameter of 0.01 or less
from the optimal value tended to result in a substantial (i.e., greater than 1%)
decrease in the resulting L2 error norm.

6.3 Effects of point distribution

Finally, as discussed at the beginning of section 6, all the point distributions so
far were semi-randomly distributed (position is random, subject to a minimum
distance between any two pairs of points). Thus, while the point distributions
used were randomized, the distribution of points was homogeneous, as illus-
trated by the point distributions in figure 1. They are “dot patterns” in the
sense of [5]. A truly random distribution of points will exhibit clusters that
are expected to mask the desired shape of the distribution. The less homoge-
neous the distribution of points, the greater the expected deviation between
the characteristic shape and the desired shape. In fact, the χ algorithm seemed
surprisingly tolerant to increasing randomness in point distribution. Figure 9
shows one example of a set of 250 points randomly distributed throughout the
letter “F” with the corresponding (optimal) characteristic shape.

Fig. 9. Example characteristic shape based on inhomogeneous point distributions

To systematically investigate the responses of the χ algorithm to increasingly
inhomogeneous point distributions, one further experiment was executed. Fig-

22

ure 10 shows the effects on shape error (in terms of optimal L2 error norm
ratio) of varying the homogeneity of the point distributions, for each of the
four shapes used in the experiments in section 6.2. In a semi-random point
distribution, each point must be greater than a certain threshold distance d
from any other points. The larger the distance d, the fewer points in total that
will be able to fit inside a given shape. Thus, there is a direct relationship be-
tween the number of points that can fit inside a given shape and the threshold
distance d.

For n points, maxd denotes the largest threshold distance such that all n points
can still fit inside the shape (such as in the point distributions in figure 1).
Point distribution homogeneity can then be represented using a normalized
measure h = d

maxd

, such that h ∈ [0, 1]. Setting h = 0 results in wholly
inhomogeneous, truly random point distributions. Setting h = 1 results in
wholly homogeneous point distributions (where the entire point set just fits
inside the shape). To enable comparison between experiments, figure 10 uses
the normalized parameter h for the abscissa values. The average density of
points remains constant across all experiments (approximately 0.001 points
per unit area, 1 point occupying a region of approximately 30 × 30 pixels).

The experiment summarized in figure 10 again used 5 randomized shapes to
generate each data point. One important difference with previous experiments
is that no boundary points were used in generating the point distributions, in
order to provide truly random point distributions. Instead, the L2 error norm is
calculated with respect to the original shape, which may include smooth curves
(for example the letter “S”). As a consequence of this difference, the absolute
levels of shape errors in figure 10 are higher than for previous experiments
(e.g., figure 8). However, it is the relative change in shape error, rather than
the absolute shape error, which is of primary interest in this experiment.

As expected, figure 10 does show an increase in errors with increasingly ran-
dom point distributions across all shapes tested. However, the magnitude of
increasing errors is relatively low, with truly random distributions typically
increasing the error rates by about 50% when compared with homogeneous
point distributions. In effect, these results indicate that the χ algorithm de-
grades gracefully in the presence of inhomogeneous point distributions. To
provide some context for this statement, we note that the convex hulls of the
four shapes in figure 10 are associated with L2 error norm ratios ranging from
approximately 17% (for Germany shape) through approximately 54% (for the
letters “F” and “S”) to more than 150% (for Vietnam shape). Even using truly
random point distributions, the best characteristic shapes are associated with
error norm ratios of between 12% (for Germany shape) to 21% (for Vietnam
shape).

23

0

5

10

15

20

25

00.10.20.30.40.50.60.70.80.91

Normalized point distribution homogeneity

L
2

e
rr

o
r

n
o

rm
(a

s
%

o
f

s
h

a
p

e
a

re
a

)

Letter "F" shape

Letter "S" shape

Germany shape

Vietnam shape

Fig. 10. Variation in shape error with changing point distribution homogeneity

6.4 Discussion of experimental results

In summary, the experimental evaluation of the χ algorithm yielded the fol-
lowing key results for those shapes tested:

• The χ algorithm is able to accurately characterize the shape of point sets
derived from a range of different shape types, given appropriate parameter-
ization.
• Although the optimal parameter value varies for different shapes and point

distributions, normalized parameter values of between 0.05–0.2 typically
produce optimal or near-optimal shape characterization across a wide range
of point distributions.
• The optimal parameter value algorithm is reasonably tolerant to changes

in point density and point distribution homogeneity (from semi-random to
truly random) for those shapes tested.

Although the results presented here summarize the behavior of χ algorithm
across many hundreds of different randomized point distributions, to aid com-
parison these point distributions have necessarily been derived from a rela-
tively small number of basic shapes (letters and countries). Further experi-
mental work would be needed to examine the algorithm’s response to a wider
range of shapes 2 . However, since the shapes were chosen to exhibit a range

2 To facilitate further investigation, Java software to generate characteristic shapes
is available online from the corresponding author at http://www.duckham.org.

24

of different levels of sinuosity and angularity, there is no a priori reason to
believe that different shapes would yield substantially different results.

7 Discussion

Before concluding, we reflect on three broader issues pertinent to χ-shapes: the
relationship between χ-shapes and other shape characterization algorithms;
the performance of the algorithm in the presence of outliers and the generation
of non-simple polygons; and potential applications of χ-shapes.

7.1 Relationship to other shape characterization algorithms

As identified at the end of section 2, a systematic comparison of the many
shape characterization algorithms is conspicuously absent from the existing
literature. Such a comparison would in itself represent a valuable contribution,
but faces a variety of substantial obstacles.

The primary obstacles relate to the task of comparing the shapes generated
by different algorithms. First, as originally stated in section 1, there can exist
no “correct” shape for a set of points in the plane. As a consequence, all non-
convex hull shape algorithms must rely on at least one parameter in order to
generate a family of shapes for a single input point set. The shapes within a
single algorithm’s family can be quite varied (for example, see figure 5). Thus
any comparison of the shapes generated by two different algorithms must ac-
count for the different parameterization, either by finding a way to link the
parameters for the two algorithms being compared, or by comparing the en-
tire family of algorithms at once. However, there exists no obvious mechanism
or experimental design for realizing either of these possibilities. This problem
is compounded by the need to compare each algorithm’s performance for not
just one, but across a range of input point sets. Further, as already argued, the
decision as to whether a particular shape is “better” or “worse” is as much a
matter for human cognition and preference as computational geometry. Con-
sequently, choosing an objective metric for comparison is also problematic. In
the light of these difficulties, it becomes more understandable why no research
has yet attempted such a systematic comparison of the different algorithms,
and why such a comparison is regarded as beyond the scope of this paper.

Comparing the computational characteristics of the different algorithms is
more straightforward. However, most algorithms, including our characteristic
shape algorithm, have the same computational complexity, O(n log n). The
characteristic shape algorithm is arguably more efficient than other algorithms,

25

such as α-shapes, when it is necessary to generate simple polygons, but only
marginally so at best. The characteristic shape algorithm can generate a fam-
ily of simple polygons in O(n log n) time. The α-shape algorithm, for example,
can generate a family of (possibly non-simple) polygons in similarly O(n log n)
time. [19] has shown that it is possible to test for polygon simplicity in O(n′)
time, where n′ is the number of polygon vertices, but the complexity of this
algorithm means O(n′ log n′) algorithms are more often used in practice. Thus,
checking each of m polygons in the family of α-shapes for simplicity might be
expected to lead to a polynomial time α-shape-based algorithm for generating
simple polygons. However, in practice it would most likely be possible to op-
timize such an algorithm to O(n log n) time (for example using binary search
with knowledge of the total ordering of α-shapes in the family).

χ-shapes are not simply a special case of some other non-convex shapes. For
example, figure 11 shows a χ-shape (solid hairline) and an α-shape (thick
dashed line) for a set of points (in the shape of Cyprus). The shapes overlap
in a complex manner, some parts of the χ-shape lying outside of the α-shape,
and vice versa. Since the families of both χ- and α-shapes are linearly ordered
by spatial containment, this figure provides a proof by example that χ-shapes
are not a special case of α-shapes (nor vice versa). Note that the α-shape is
not simple, and in this case even includes a topological irregularity (a linear
component in the far right-hand side of the figure). However, aside from the
fact that the α-shape is not simple (simplicity being a desirable property for
the shapes of many geographic regions, like most countries) there is little about
one shape that is “better” than the other: both seem to provide “reasonable”
representations of this shape in their own way.

Fig. 11. Example differences between χ-shape (solid hairline) and α-shape (thick
dashed line)

26

7.2 Outliers, disconnected regions, and regions with holes

As already highlighted, the characteristic shape algorithm generates a simple
polygon that contains all the points in the input data set. Hence, the algo-
rithm does not deal with outliers especially well. Figure 12 shows a C-shaped
point set with an outlier in the mouth of the C, along with two examples of
the resulting a χ-shape and α-shape (both generated using appropriate man-
ually chosen parameterization). The χ-shape algorithm includes the outlier.
Although the α-shape algorithm also includes the outlier, it does so as an
isolated, disconnected point component. The other, polygonal component of
the α-shape is free of the outlier.

Fig. 12. Example χ-shape (solid hairline) and α-shape (thick dashed line) for a “C”
shaped point set containing an outlier (white point).

However, outliers can be eliminated by preprocessing. As suggested earlier, a
clustering algorithm can potentially be used to identify and eliminate outliers
from the input point set prior to applying the χ-shape algorithm. In the case
of figure 12, the DBSCAN clustering algorithm (density-based scan spatial
clustering algorithm, [20]) easily clusters the figure into exactly the two clusters
required: one singleton cluster containing the outlier and a second cluster
containing all the other points in the C shape. Thus, the outlier could be
removed before running the χ-shape algorithm simply by preprocessing the
input point set with a spatial clustering algorithm such as DBSCAN.

The disadvantage of preprocessing the data set to detect and remove outliers
in this way is that any clustering algorithm will require additional parameteri-
zation. In the case of DBSCAN, two parameters are required, which essentially
define what constitutes a “neighborhood” in the desired result (the parameters
reflect the maximum radius of a neighborhood and the minimum of points in
a neighborhood). The α-shape algorithm requires no such additional parame-
terization, and manages the entire shape generation process in one step with

27

the one parameter. However, the advantage of preprocessing is much greater
flexibility. There are a wide range of algorithms that can be brought to bear
on spatial clustering (see [21]), and these can be used to allow independent
manipulation of the different components of the resulting disconnected shape.
By contrast, using α-shapes it would not be possible to achieve a less eroded
C shape while still eliminating the outlier from figure 12 (since increasing the
alpha value to decrease the erosion of the C shape also leads to the outlier
becoming a connected part of the polygonal shape again).

The problem of disconnected regions can be dealt with similarly to outliers.
Preprocessing using clustering enables distinct groups of points to be distin-
guished. These distinct groups can then be processed using separate passes
of the χ-shape algorithm. The union of of all generated χ-shapes will result
in an aggregate, disconnected χ-shape. Figure 13 illustrates the idea showing
an aggregate χ-shape generated for a similar point set to figure 12, follow-
ing preprocessing using DBSCAN spatial clustering algorithm. As for outliers,
above, this approach has the advantage of flexibility, but the disadvantage of
requiring additional parameterization.

Fig. 13. Example aggregate χ-shape based on characteristic shapes of individual
clusters identified using DBSCAN

Finally, an important feature of some shape characterization algorithms, like
α-shapes, compared with characteristic shapes is the ability to generate shapes
with holes. It is not possible to generate such shapes with the χ-shape algo-
rithm, although the algorithm degrades gracefully in the sense that it will still
successfully generate the external edge of the region. It is not especially dif-
ficult to modify the χ-shape algorithm to deal with holes. However, doing so
increases in the computational complexity of the algorithm (since the efficient
test for regularity in algorithm 2 becomes more computationally intensive)
and so we only present here the efficient O(n log n) algorithm.

28

7.3 Applications of characteristic shapes

There are a wide range of potential applications for χ-shapes and related shape
generation algorithms, especially in the geographical domain. Two examples
of such applications are geographic information retrieval (GIR) and the gen-
eration of geographic “footprints” for vague and imprecise spatial concepts,
like “South East England” [8]; and the characterization of dynamic collectives,
such as a flock or crowd [22]. Another emerging application is in the domain
of geosensor networks, where the shape of salient regions (such as “hot spots”)
need to be generated from point-based sensor nodes (for example, measuring
temperature, [23]).

Figure 14 illustrates a simple example of using χ-shapes in a GIR-related ap-
plication. The figure shows a map of the Mornington Peninsula, an important
wine growing region in Victoria, Australia, along with 36 of the best-known
wineries in the region (actual POI data from http://gps-data-team.com/).
The “Mornington Peninsula wine region” is an example of a vague geograph-
ical concept as it has no crisp boundary: while there are places that are defi-
nitely in the Mornington Peninsula wine region, and places that are definitely
not, no crisp boundary exists that separates the two.

To represent the indeterminacy at the boundary, Figure 14 shows the en-
tire family of characteristic shapes super-imposed on top of each other. The
darkest shading fills those parts of the region that are present in all of the
characteristic shapes (i.e., the “core”: those places that are definitely part of
the “Mornington Peninsula wine region”). Lighter shading fill those parts of
the region that are present in fewer of the characteristic shapes (i.e., the lighter
the shading, the worse the candidate for being part of the “Mornington Penin-
sula wine region”). Characteristic shapes are a good choice for this task as we
can stipulate a priori that the Mornington Peninsula wine region is a simple
polygon and all of one piece (i.e., no holes or disconnected components); the
algorithm guarantees that all wineries are part of the region, with outliers be-
ing unlikely in such a data set; and the required entire family of χ-shapes can
be computed in O(n log n) time. Such a representation of vagueness would for
example be useful in a GIR application for responding to user queries about
the “Mornington Peninsula wine region.”

8 Conclusions

In this paper we have presented a new algorithm for generating a simple,
connected, possibly non-convex polygon that characterizes the shape of a set
of points in the plane. The algorithm, based on the Delaunay triangulation

29

10km

Vineyard

Wine region

Fig. 14. Example application of χ-shapes: the shape of the Mornington Peninsula
wine region

of the point set, is optimal, requiring O(n log n) time to execute. The shape
produced by our algorithm is parameterized by means of a single normalized
length parameter. Changing the length parameter produces one of a finite
family of totally ordered characteristic shapes, ranging from the convex hull
at one extreme to a uniquely defined simple polygon with minimal area at the
other extreme.

No one parameter value can ever yield a “correct” answer; instead different
parameter values are expected to be required for different applications. How-
ever, some guidelines for good lengths are suggested by experiments using
the algorithm. Experimental results demonstrate the algorithm’s stability and
graceful degradation across a wide range of input point sets. A range of further
experimental work is suggested by this research, including:

• experiments to evaluate the performance of the χ algorithm across a wider
range of shapes; and
• more extensive experimental work to directly compare the performance of

this and the other shape characterization algorithms reviewed in section 2.

Extensions of the algorithm to higher dimensions are possible, but problem-
atic. A direct extension to three-dimensional space does present efficiency
problems. In particular, since in three dimensions any number of exterior faces
of a regular three-dimensional triangulation could meet at a single vertex, a
three-dimensional regularity check algorithm would be expected to require
substantially more computation.

30

Acknowledgments

Glenn Hudson developed the Java software used to run the experiments de-
scribed in this paper and provided helpful feedback and comments on the
algorithm itself. Matt Duckham’s research is supported by the Australian Re-
search Council under ARC Discovery Grant DP0662906.

References

[1] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, “On the shape of a set of
points in the plane,” IEEE Transactions on Information Theory, vol. IT–29,
no. 4, pp. 551–558, 1983.

[2] M. Melkemi and M. Djebali, “Computing the shape of a planar points set,”
Pattern Recognition, vol. 33, pp. 1423–1436, 2000.

[3] M. J. Fadili, M. Melkemi, and A. ElMoataz, “Non-convex onion-peeling using
a shape hull algorithm,” Pattern Recognition Letters, vol. 25, pp. 1577–1585,
2004.

[4] B. Chazelle, “On the convex layers of a planar set,” IEEE Transactions on
Information Theory, vol. 31, pp. 509–517, 1985.

[5] A. R. Chaudhuri, B. B. Chaudhuri, and S. K. Parui, “A novel approach to
computation of the shape of a dot pattern and extraction of its perceptual
border,” Computer Vision and Image Understanding, vol. 68, no. 3, pp. 257–
275, 1997.

[6] G. Garai and B. B. Chaudhuri, “A split and merge procedure for polygonal
border detection of dot pattern,” Image and Vision Computing, vol. 17, pp.
75–82, 1999.

[7] H. Alani, C. B. Jones, and D. Tudhope, “Voronoi-based region approximation
for geographical information retrieval with gazetteers,” International Journal
of Geographical Information Science, vol. 15, no. 4, pp. 287–306, 2001.

[8] A. Arampatzis, M. van Kreveld, I. Reinbacher, C. B. Jones, S. Vaid, P. Clough,
H. Joho, and M. Sanderson, “Web-based delineation of imprecise regions,”
Computers, Environment, and Urban Systems, vol. 30, no. 4, pp. 436–459, 2006.

[9] N. Amenta, S. Choi, and R. Kolluri, “The power crust,” in Sixth ACM
Symposium on Solid Modeling and Applications, 2001, pp. 249–260.

[10] ——, “The power crust, unions of balls, and the medial axis transform,”
Computational Geometry: Theory and Applications, vol. 19, no. 2–3, pp. 127–
153, 2001.

31

[11] D. Attali, “r-regular shape reconstruction from unorganised points,”
Computational Geometry, vol. 10, pp. 239–47, 1998.

[12] A. Galton and M. Duckham, “What is the region occupied by a set of points?”
in GIScience, ser. Lecture Notes in Computer Science. Springer, 2006, vol.
4197, pp. 81–98.

[13] J. Edmonds, “A combinatorial representation for polyhedral surfaces,” Notices
of the American Mathematical Society, vol. 7, p. 646, 1960.

[14] B. Baumgart, “A polyhedron representation for computer vision,” in Proc.
AFIPS National Computer Conference, vol. 44, 1975, pp. 589–596.

[15] K. Weiler, “Edge-based data structures for solid modeling in curved-surface
environments,” Computer Graphics and Applications, vol. 5, no. 1, pp. 21–40,
1985.

[16] J.-F. Dufourd and F. Puitg, “Functional specification and prototyping
with oriented combinatorial maps,” Computation Geometry—Theory and
Applications, vol. 16, no. 2, pp. 129–156, 2000.

[17] M. F. Worboys and M. Duckham, “Monitoring qualitative spatiotemporal
change for geosensor networks,” International Journal of Geographic
Information Science, vol. 20, no. 10, pp. 1087–1108, 2006.

[18] J. O’Rourke, Computational geometry in C, 2nd ed. Cambridge, UK:
Cambridge University Press, 1998.

[19] B. Chazelle, “Triangulating a simple polygon in linear time,” Discrete
Computational Geometry, vol. 6, pp. 485–524, 1991.

[20] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining (KDD’96), 1996, pp. 226–231.

[21] H. J. Miller and J. Han, Eds., Geographic Data Mining and Knowledge
Discovery. CRC Press, 2001.

[22] A. Galton, “Dynamic collectives and their collective dynamics,” in COSIT, ser.
Lecture Notes in Computer Science. Springer, 2005, vol. 3693, pp. 300–315.

[23] M. Duckham, S. Nittel, and M. Worboys, “Monitoring dynamic spatial fields
using responsive geosensor networks,” in ACM GIS 2005, C. Shahabi and
O. Boucelma, Eds. New York: ACM Press, 2005, pp. 51–60.

32

