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Abstract. There are many situations in GIScience where it would be
useful to be able to assign a region to characterize the space occupied by
a set of points. Such a region should represent the location or configura-
tion of the points as an aggregate, abstracting away from the individual
points themselves. In this paper, we call such a region a ‘footprint’ for
the points. We investigate and compare a number of methods for produc-
ing such footprints, with respect to nine general criteria. The discussion
identifies a number of potential choices and avenues for further research.
Finally, we contrast the related research already conducted in this area,
highlighting differences between these existing constructs and our ‘foot-
prints’.

1 Introduction

There are many situations in GIScience where it would be useful to be able to
assign a region to a set of points, to represent the location or configuration of the
points as an aggregate, abstracting away from the individual points themselves.

In map generalisation, for example, what appears at one level of detail as
a set of discrete points may be better represented, at a coarser level of detail,
as a region. The region indicates where the points are located and can give a
general idea of their configuration, but does not indicate how many points there
are or their individual locations. In Figure 1, for example, the configuration of
points represented at one scale as in the left-hand illustration might appear at
a smaller scale as in the right-hand illustration.

One might refer to the ‘outline’ of a group of trees, or a flock of birds, or
generally of any aggregation of discrete point-like objects, but it is important
to appreciate that the outline is not by any means uniquely determined. To
illustrate this, note that each of the illustrations in Figure 2 represents a possi-
ble outline for the same set of points; depending on one’s purpose in requiring
an outline, some may be ‘better’ solutions than others, but none is absolutely
‘correct’.

Different choices of outline can have an effect on how we understand phrases
like ‘among the trees’ or ‘in the wood’. The trees can be considered to form a
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Fig. 1. Generalization and scale for points and regions

Fig. 2. Possible outlines for the region occupied by a set of points

collection of point-like objects distributed over an area of space. Which other
spatial points should we count as ‘among the trees’? The obvious answer is ‘the
points enclosed within the outline of the trees’, but as we have seen, this does
not provide us with a determinate answer.

Sometimes a configuration of objects is naturally divided into a number of
separate clusters. The clustering may be ‘obvious’, as in Figure 3, where the set
of points on the left is shown as falling into three clusters by the fact that the
region associated with it (on the right) has three connected components.

Fig. 3. Clustering in regions occupied by a set of points

In other cases, there may be several equally good answers, as for example in
Figure 4, where the same set of points is presented as being grouped into either
two or four clusters.

One criterion for ‘good’ clustering may of course be visual salience, but visual
salience may in turn serve as a pointer towards some underlying causal mecha-
nisms which lead to the points being clustered in the way that they are. Evaluation
of particular solutions will always be subject to the vagaries of human judgment;
this is closely tied to the notion of gestalt perception, that faculty of the human
perceptual system which enables us to perceive complex configurations as wholes
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Fig. 4. Ambiguity in clustering

with global properties which cannot be simply derived by aggregating local prop-
erties. Our inquiry must therefore go beyond computational geometry to engage
with more human-oriented disciplines such as cognitive science.

The criteria for evaluating any particular solution to the problem of associat-
ing a region with a set of points, or indeed any general method of solution, must
in the last instance be determined by the particular application context in which
it is being evaluated. We can, however, point to a number of general concerns
which will be relevant to a wide range of application contexts and which we can
therefore take to represent a basic set of criteria on top of which more refined
criteria can be built as the application demands. There follows a list of such
concerns; for convenience we shall use S to refer to the given set of points, and
R(S) to refer to the region proposed as representing their collective location.

1. Should every member of S fall within R(S), as in Figure 5(a,c–g), or are
outliers permitted, as in Figure 5(b)?

2. Should any points of S be allowed to fall on the boundary of R(S), as in
Figure 5(a–b,d–g), or must they all lie in its interior, as in Figure 5(c)?

3. Should R(S) be topologically regular, as in Figure 5(a–c, e–g), or can it
contain exposed point or line elements, as in Figure 5(d)?

4. Should R(S) be connected, as in Figure 5(a–d,f,g), or can it have more than
one component, as in Figure 5(e)?

5. Should R(S) be polygonal, as in Figure 5(a–e,g), or can its boundary be
curved, as in Figure 5(f)?

6. Should R(S) be simple, i.e., its boundary is a Jordan curve, as in Figure
5(a–c,f), or can it have point connections as in Figure 5(g)?

Note that questions (1) and (2) are concerned with the relationship between the
region R(S) and the points in S, whereas (3)–(6) are all concerned with what
kinds of regions we are prepared to admit to play the role of R(S).

A further question, which is difficult to frame precisely, let alone answer, is
concerned with the amount of ‘empty space’, unoccupied by points, that is al-
lowed inside a region. Of course, all the area of the region apart from the points
themselves (which mathematically may be of dimension zero, but in applications,
as in our diagrams, might just as well be ‘small regions’) is empty space; what
is meant is rather illustrated in Figure 6: on the left, Figure 5(a) is repeated,
with the the largest circle contained in R(S) but disjoint from S highlighted; on
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Examples to illustrate the evaluation criteria

the right we do the same for Figure 5(d). In the latter, R(S) clearly contains
less ‘empty space’, and therefore for some purposes may be regarded as more
desirable.

Fig. 6. Empty space as a criterion for region forming

Our question is therefore:

7. How big is the largest circular (or other specified) subregion of R(S) that
contains no elements of S?

Further evaluation criteria relate to the methods of solution themselves,
rather than the results produced by them:

8. How easily can the method used be generalised to three (or more) dimen-
sions?

9. What is the computational complexity of the algorithm?

Finally, it is important to note that we have deliberately chosen objective
geometric and computational criteria for comparing R(S) and methods of gener-
ating R(S). Our list might also be extended with innumerable further perceptual
criteria (e.g., the ability of human visual perception to discern different elements
in R(S)) and wider cognitive criteria (e.g., the aesthetics of R(S)). However, such
extensions would make comparison much harder and more laborious.

2 Convex Hulls

Ask a mathematician to define a region associated with a set of points, and
there is a fair chance that they will nominate the convex hull. The convex hull
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of a set of points S in the plane is the smallest convex polygon that encloses S.
The convex hull has the advantage that it is uniquely defined, in a very simple
way, for an arbitrary set of points. Moreover, algorithms for computing convex
hulls have been thoroughly researched and a good deal is known about their
computational properties (e.g., [1,2]).

How do convex hulls fare with respect to our list of evaluation criteria? Note
that we are here assuming that the set of points S is finite; if infinite sets are
allowed, then the answers to some of the questions will be different.1

1. Outliers are not allowed.
2. There are always points of S on the boundary of R(S).
3. The convex hull is topologically regular (unless the points are collinear).
4. The convex hull is connected (a disconnected region is by nature non-convex).
5. The convex hull is polygonal.
6. The boundary of the convex hull is a Jordan curve (unless the points are

collinear).
7. The amount of empty space included within the convex hull can be large.
8. The construction readily generalises to n dimensions.
9. There exist convex-hull algorithms of complexity O(n log n).

Characteristics 4 and 7 in particular mean that the convex hull is unsuitable
for many purposes. A good outline—one which represents the shape of a point
configuration in a cognitively salient way—must not allow too much empty space.
Clustering can also be cognitively salient, and consequently in many cases R(S)
must be allowed to be disconnected to provide a satisfactory outline (although
clustering might also be treated as a separate problem from outline generation).

These points are illustrated in Figure 7(a) and (b). In (a), we see that the
convex hull entirely fails to capture an essential feature of the set of points
under consideration, namely that they occupy a roughly C-shaped region. In
(b), likewise, the convex hull fails to reveal that the points under consideration
fall into two distinct clusters separated by a point-free gap that is comparable
in size to the clusters themselves.

For this reason, we have been led to look for methods for generating non-
convex ‘hulls’ of various kinds—as shown for the same sets of points in Figure
7(c) and (d). We shall refer to regions of this kind, which are intended to rep-
resent the location of a set of points, as footprints for that set. A natural way
to approach this is by way of extending or generalising existing convex-hull al-
gorithms. We shall consider some examples of this approach first before turning
our attention to some alternative methods. Throughout, it should be borne in
mind that, unlike the convex hull, footprints are not unique; it never makes sense
to ask whether a proposed footprint is ‘correct’—certainly not in isolation, but
even with respect to any specified application context. For this reason, evalua-
tion of the results is not, and never can be, an exact science, relying as it must
to some extent on subtle and unquantifiable elements of human judgment.
1 For example, if S is an open set, then none of its points lies on the boundary of the

convex hull; and if S is a convex curvilinear figure then its convex hull (i.e., S itself)
is non-polygonal.
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(a) (b) (c) (d)

Fig. 7. Two convex hulls and two non-convex ‘footprints’

3 Gift-Wrapping and the Swinging Arm

Our first procedure generalises the well-known ‘gift-wrap’ algorithm for gener-
ating convex hulls. In the planar (two-dimensional) version of this algorithm,
the hull is generated by a sequence of swings of a half-line L, initially anchored
at an extremal point of S. At each step, L is anchored to the last point added
to the footprint, and rotated clockwise until it hits another point in S. This is
added as the next vertex of the footprint, and the procedure is repeated until
we return to the starting point.

The Swinging Arm procedure for generating footprints (see Appendix A)
is essentially identical to this except that instead of a half-line we use a line-
segment of some constant length r specified as an input to the algorithm. This
is the ‘swinging arm’. If r is not less than the longest side of the convex hull
perimeter, then the procedure will generate the convex hull; but if it is shorter
than that, the polygon it generates is non-convex. For sufficiently short arms, the
algorithm will initially generate a footprint component which does not include all
of S; in this case, we repeat the algorithm starting from a new extremal point
selected from the points of S not already included in one of the components.
This is repeated until every point of S is included in one of the components. The
footprint thus generated will then be disconnected. When the length of the arm
is less than the minimal separation of any two points in S, then the swinging
arm will never encounter any points at any stage in the process: in this case the
footprint is identical to S.

Figure 8 shows the sequence of steps by which the algorithm generates a
footprint for a set of nine points, given an arm-length r. At step j, a circle of
radius r is inscribed about the latest point (H1,j) recruited to the footprint, and
the next edge to be added to the footprint (H1,jH1,j+1) is indicated by a dashed
line, previous edges being shown solid.

The footprint obtained will vary with the length of the swinging arm, as
shown in Figure 9 for the same set of points as before. The values of r shown are
those at which the footprint changes; for example, the footprint shown for r = 3
will result for any arm-length in the range 3 ≤ r <

√
10. For smaller values of r

(e.g., r =
√

5), the polygons constituting the footprint may be degenerate, and
for r <

√
5, the footprint is identical to S.
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j = 0 j = 1 j = 2 j = 3

j = 4 j = 5 j = 6 j = 7

Fig. 8. Construction of a footprint using the ‘swinging arm’ algorithm

In the swinging arm algorithm presented above, the arm is stipulated to swing
clockwise. Does it make any difference if instead we make it swing anticlockwise?
In the example considered, there is one case where it does make a difference.
The first two illustrations in Figure 10 show the results for arm-length

√
26,

swinging clockwise and anticlockwise. Inspection of these figures will reveal the
characteristic configuration of points which gives rise to the difference.

Since the direction in which the arm is swung is essentially arbitrary, it is
unsatisfying that the choice can lead to different results. For this reason, one
might prefer to use the union of the clockwise and anticlockwise swinging-arm
footprints for a given set of points, as shown in the third illustration in Figure
10. This idea leads naturally on to the further idea that, in order to obtain this,
we could discard the swinging arm altogether, and instead simply join together
all pairs of points whose separation is less than or equal to the arm length, as
shown in the rightmost illustration.2 To obtain the footprint, we then simply
include all points lying within any closed polygon formed out of these joins.
This method, which we shall call the Close Pairs method, could also be seen as
a direct generalisation of a method for generating the convex hull, since if we
join together all pairs of points regardless of their separation then we obtain the
convex hull.

How do the Swinging Arm (SA) and Close Pairs (CP) methods stand with
respect to our list of general evaluation criteria? Except where otherwise stated,
the comments below apply equally to both methods.

1. Every member of S falls within R(S).
2. There must be points of S on the boundary of R(S).
3. R(S) is in many cases topologically non-regular.

2 This the same as the ‘rmin-circle graph’ of [3].
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r =
√

5 r = 3 r =
√

10 r =
√

13

r = 4 r = 5 r =
√

52 r =
√

53

Fig. 9. Effect of varying arm-length on the footprint

Clockwise Anticlockwise Union Close pairs

Fig. 10. Clockwise vs anticlockwise swinging arm (r =
√

26)

4. R(S) is in many cases disconnected.
5. R(S) is always polygonal, so long as this term is understood to include

degenerate polygons such as polylines or isolated points.
6. In many cases, a large area of empty space included within the convex hull

will be excluded from the footprint when r is made short enough (for example
the large concavity of a ‘C’-shaped distribution of points). This is not always
the case, however, for example if the points of S are, say, the vertices of a
many-sided regular polygon; if r is at least as long as the side-length of the
polygon, the SA and CP algorithms will both give the convex hull, including
the large empty interior.

7. R(S) may have point connections (i.e., non-Jordan boundary).
8. Generalising SA to three dimensions is possible, but not straightforward—we

need to use a ‘swinging flap’, and whereas in two dimensions the boundary
of a region is linear, and hence can be constructed sequentially, in three-
dimensions there is the added complication that we have always to decide
which edge to swing the flap about next.
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Generalising CP seems more straightforward: first we must join together all
pairs of points whose separation is less than r; next include the interior of any
planar polygon formed from the edges thus obtained; and finally include the
interior of any polyhedron bounded by those polygons. A complication here
is that one might also wish to include the interiors of non-planar polygons,
but then it is not necessarily obvious how the interior of such a polygon is
to be defined.

9. For both SA and CP the computational complexity is larger than one might
imagine at first sight.

With SA, in the course of generating a footprint-component, the swinging
arm might encounter a point which already lies in the interior of that com-
ponent; such points should not be included in the perimeter of the footprint.
In the algorithm this is accomplished at step 3(e)(ii) in which such interior
points are marked as unavailable; this adds significantly to the complexity.
However, even with this complication, the worst-case complexity is O(n3),
and in practice it is usually much better than this (O(n2) or less). Note that
the complexity depends on r as well as the size of the input set—in gen-
eral, the complexity decreases as r increases, up to the point at which the
footprint becomes convex.

With CP, having constructed the edges one must then identify the closed
polygons. Note that the diagrams in Figure 12 were produced simply by
selecting the edges of length less than r, for a range of suitable values of
r. This is sufficient for the human eye to perceive the relevant footprint,
but a CP algorithm needs to identify that footprint as an explicit polygon.
Although we have not implemented this, initial investigations suggest that
such an algorithm would be computationally quite expensive. Overall, a time
complexity of O(n2) seems the best that could possibly be hoped for, with
the likelihood that a more thorough investigation of a CP algorithm would
reveal a worse complexity.

Regarding item 6, a simple refinement of the CP algorithm allows one to
eliminate large areas of empty space. Instead of including the interiors of all
polygons formed by the edges of length less than r, we can select only those
polygons with less than some specified number of sides. For example. we could
restrict it to just the triangles. A triangle whose sides are of length at most r has
area at most 0.433r2 (i.e.,

√
3

4 r2)—but the largest circle that can be inscribed in
such a triangle has area at most 0.262r2 (i.e., 1

12πr2).

4 A Delaunay-Based Method

Work by Duckham et al. [4] has used Delaunay triangulations as the basis for
defining a footprint for a set of points. The method, here designated DT, begins
by building the Delaunay triangulation of the points. Then the algorithm ‘shaves
off’ boundary edges in decreasing order of length, subject to constraints that
ensure that the final shape contains all the input points and is both regular and
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has a Jordan curve boundary (topologically isomorphic to the unit cell). Figure
11 provides an illustration of the process.

The DT algorithm terminates at a uniquely defined final shape. In Figure 6,
this terminal shape is shown in step 8, where no further edges can be removed
without violating the regularity and Jordan constraints. However, in general,
running the algorithm to its terminal shape can produce very sinuous shapes
with low visual salience. Therefore, Duckham et al. suggest a number of ways
of parameterizing the algorithm based on a minimum edge-length which leads
to shapes that have higher visual salience. The final algorithm presented by
Duckham et al. is highly efficient in terms of time complexity.

1 2 3 4

8765

Fig. 11. Some footprints produced by edge-removal from a Delaunay triangulation

A comparison of the DT method (Figure 11) with the CP method (Figure
12) reveals that while for some values of r, the CP-footprint coincides with the
corresponding DT footprint, the CP method also produces footprints that are
inaccessible via the DT method. Figure 12 shows a selection of CP-footprints
generated for the same set of points used in Figure 11. Note in particular that
footprint 3 cannot be a DT footprint since two of the vertices arise from the
crossing of two edges. Note further that as r becomes small (as in footprints 7
and 8), non-regularity sets in. Figure 12.6 has a point-connection—i.e., two tri-
angles joined only at a shared vertex; topologically, this is regular (the footprint
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is the closure of its interior), but this feature is also disallowed by the DT method.
Footprints 7 and 8 are not only non-regular, they are also disconnected, another
feature not possible for a DT-footprint.

2 3 4

8765

1

Fig. 12. Some footprints produced by the ‘close pairs’ method (cf. Figure 11)

Our list of evaluation criteria can be applied to the DT method of [4], with
results as follows:

1. Every member of S falls within R(S).
2. There are always points of S on the boundary of R(S).
3. R(S) will always be topologically regular.
4. R(S) will always be connected.
5. R(S) will always be polygonal.
6. The boundary of R(S) will always be a Jordan curve.
7. It is possible for R(S) to contain a large amount of empty space, like a convex

hull—although since R(S) must be a subset of the convex hull, it cannot
contain more empty space. The requirements for regularity and simplicity
mean, for example, that it is not possible to generate polygons with holes
using the DT algorithm. Thus, a ‘ring’ of points generates a circular polygon
hull rather than an annulus.

8. Extensions to three dimensions are problematic (see below).
9. Duckham et al. report that their algorithm achieves a computational com-

plexity of O(n log n), although this efficiency depends on the regularity and
simplicity constraints, as well as only holding in two dimensions.
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Duckham et al. argue that the regularity constraints are useful both from the
perspective of visual salience, and from the perpective of algorithm efficiency. It
is conceivable that a variety of different algorithms might be developed based
on Delaunay triangulations and without regularity constraints. These would al-
low, for example, the generation of disconnected regions and regions with holes
(hence, the criteria 3, 4, 6 and 7 listed for the DT method above do not in general
hold for all Delaunay triangulation-based methods). However, we can observe a
number of features of any Delaunay-based algorithm, regardless of the specific
algorithm used.

1. Starting with a Delaunay triangulation immediately constrains the solution
space for the boundary of the resulting region, much more so than the SA and
CP methods. Some edges that might be added using SA and CP methods
are not present in the Delaunay triangulation, and so can never be present
in the final shape; the converse is not true.

2. Developing an algorithm that must compute the Delaunay triangulation im-
mediately places a lower bound of Ω(n log n) on the optimal time complexity
for the entire algorithm (in itself not a negative feature, since this clearly still
allows for the specification of efficient, scalable Delaunay-based algorithms).

3. Although Delaunay triangulations can be extended beyond two dimensions,
there are implications for extending Delaunay-based algorithms to higher-
dimensional spaces. For example, the possibility of unshellable triangulations
in more than two dimensions presents problems for extending Duckham et
al.’s method to three or more dimensions.

5 Extended Footprints

Why should we insist on finding a polygon (or similar) region whose vertices are
points of the original set? To represent the region occupied by the points at a cer-
tain granularity, it is natural to suppose that each point has an ‘area of influence’,
and to represent the region by the aggregation of all the areas of influence of the
points in the set. The points themselves would then all lie in the interior of the
region, with none on the perimeter, as in Figure 5(c): this leads to solutions which
differ from all the ones considered up to now with respect to our second criterion.
Let us call such a region an extended footprint for the set of points.

An obvious way of generating an extended footprint is as follows. For each
point in the set, construct a closed circular disc of radius 1

2r centred on that
point, and let the region be the union of these discs. Let us call this the Covering
Discs (CD) method. An example is shown in Figure 13. To produce a smoother
outline, we could draw in the shared tangents of any pair of discs which overlap,
and include also the area between the tangents. This is the Covering Discs with
Tangents (CDT) method; an example is shown in the right-hand illustration of
Figure 13.

The CD/CDT method is closely related to the dilation and erosion operations
common in computer graphics and mathematical morphology (e.g., [5]). Simple
and obvious though this method is, the footprints produced do not seem very
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Fig. 13. An extended footprint without and with added tangents

natural. An important question concerns how far the footprint should extend
into the ‘outer space’; the CD method assumes that this distance should be the
same all round the periphery of the footprint, and this may indeed be the most
natural default position. However, one situation where we may be able to make
a more informed choice about how far the footprint should extend beyond the
points is when we have additional information about points which are to be
excluded from the region. This allows one to make use of the methods of [6] and
[7] which are briefly discussed in the next section.

6 Related Work

In terms of motivation, the closest work we are aware of is that of Edelsbrunner
et al. [8], in which the concept of ‘α-shape’ is developed as a generalisation from
a certain definition of convex hull. The α-shape of a point-set S is a straight-line
graph derived from the α-hull, which is defined to be the intersection of all closed
discs of radius 1/α that contain all the points of S. (If α < 0, the closed disc of
radius 1/α is interpreted as the complement of the open disc of radius −1/α.)
For α = 0, we have the convex hull; for sufficiently large negative values of α,
we have the set S itself. Unlike with our footprints, some of the points of S may
lie outside the α-shape (cf. criterion 1).

Traka and Tziritas [9] give an algorithm for constructing a non-convex hull
R(S) by starting with the convex hull of S and successively adding extra points
from S to the perimeter; but for their purposes it is required that all points of
S lie on the perimeter of R(S) (which is therefore a Hamiltonian circuit of the
complete graph on those points), whereas for our more general purposes this
condition is unnecessarily stringent.

In the context of GIS, a method based on Voronoi diagrams has been sug-
gested by [6]. This is applicable where the points S are representative localities
within some region R, and in addition we are given a set S′ of points known
to lie outside R. In this Dynamic Spatial Approximation Method (DSAM), the
Voronoi diagram of S ∪ S′ is constructed, and an approximation to region R is
derived as the union of the Voronoi cells containing members of S. This approx-
imation to R is a kind of footprint, typically non-convex, of the set S. It is, of
course, an extended footprint. An example is shown in Figure 14(a), where the
initial set of points S (shown by the black circles) is supplemented by additional
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points (shown by the white circles) which are supposed to be definitely outside
the target region R. The dotted lines give the Voronoi tessellation for the full set
of points, and the solid line shows the boundary suggested by the DSAM method
for region R. The resulting approximation to R is shown shaded. It consists, in
fact, of all those points for which the nearest classified point is in S.

A drawback is that this method can only be used if a suitable set S′ is given,
which is often not the case; however, one might consider modifying the method to
cover cases where all we are given is the set S, by introducing some arbitrary set
of points lying outside the convex hull and using these as S′. The method could
be iterated: once a footprint has been formed by the DSAM method, we create
a new S′ from points selected to lie outside that footprint, and then generate a
new footprint. Successive iterations will lead to footprints that cling more tightly
to the original set S.3

A related method, involving Delaunay triangulations, is suggested in [7]. This
is illustrated in Figure 14(b). Here the Delaunay triangulation of the same set S
is shown; each edge of the triangulation is either dotted (if it joins two ‘white’
points), dashed (if it joins two ‘black’ points), or solid (if it joins a ‘white’ and a
‘black’ point). Region R (shown shaded) is obtained by joining up the midpoints
of the solid edges in the triangulation. It will be seen that while it resembles the
Voronoi-based approximation, it has the advantage of giving a smoother outline.

In three-dimensions, the Power Crust method of [10,11], which is based on
Medial Axis Transforms, provides good ‘footprints’4 very much in the spirit of
our own requirements. However, the application context of this work is surface
reconstruction from data points captured from real objects. As a consequence,
the initial set of points are required to lie on the surface of the output region,
which means that the problem under consideration is somewhat different—albeit
related—to ours.

Our notion of a footprint is in some ways superficially reminiscent of, though
in essence quite different from, the relative convex hull of [12]. The relative convex
hull of a region R ⊆ R′ is the figure with the minimum perimeter whose perimeter
lies entirely in the closure of R′ \ R.

The fact that our footprints are parametrised by r, the swinging arm-length
(or disc diameter), recalls multiresolution approaches to shape such as [13] and
indeed reflects the same underlying motivation of revealing different kinds of
structure existing at different granularities. However, these approaches are es-
sentially concerned with the shapes of regions, whereas we are concerned with
constructing a region to represent a discrete set of points.

Having obtained such a region, we still need to be able to describe the result-
ing shape—what is it, for instance, about Figure 7(c) which makes it a C-shape:
where does the linearity of the ‘C’ come from? Features such as this might be
revealed by some form of skeletonisation procedure. Skeletonisation techniques

3 This method has been investigated by Nicholas Talbot in an unpublished final-year
undergraduate project supervised by Antony Galton at Exeter.

4 The inverted commas here merely reflect the slight oddity of referring to a three-
dimensional region as a footprint.
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(a) (b)

Fig. 14. Approximations to the region defined by a set of points, using (a) a Voronoi
tessellation (after Alani et al. [6]) and (b) a Delaunay triangulation (after Arampatzis
et al. [7]).

are being extensively investigated by a number of researchers, e.g., [14], but not
in connection with our footprint problem.

7 Conclusions and Further Work

In this paper we have only scratched the surface of what is potentially a rich
field for investigation. We have described a number of methods for generating
footprints for sets of points, and have hinted at some possible applications for
such techniques. However, for the further evaluation of these different methods,
it will be necessary to adopt a sharper focus in this respect: ultimately, it will
only be in specific contexts of application that a final evaluation of any given
method can be given, and this must serve as a pointer to further work.

Other topics for investigation include the mathematical properties of the foot-
prints derived by the various methods, a closer examination of the computational
properties of the algorithms (and in particular a more detailed analysis of their
complexity), and, of course, a generalisation of the methods to three dimensions.

In relation to the first of these topics, it would be useful to investigate the
relationship between our various kinds of footprint and the general geometrical
notion of a hull. Klette and Rosenfeld [15] give the conditions for a hull operator
H as

H1. S ⊆ H(S)
H2. S1 ⊆ S2 → H(S1) ⊆ H(S2)
H3. H(H(S)) ⊆ H(S).

If H2 is replaced by

H4. S1 ⊆ S2 → area(H(S1)) ≤ area(H(S2))
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then we have what is called a ‘near-hull’. If neither H2 nor H4 is stipulated
then we have a ‘pseudo-hull’. Our footprints are clearly related to these various
kinds of hull but for the most part do not exactly correspond to any of them.
In particular, note that property H3 will not be applicable to those footprint-
generating methods which require a finite set of points as input, since in that
case the footprint operator R cannot be applied to a second time, so there is no
such region as ‘R(R(S))’.

Another issue that needs to be investigated is the relationship between foot-
print formation and clustering. Algorithms which can generate footprints with
multiple components do, by that very fact, function as clustering algorithms;
but they are not necessarily very good clustering algorithms, and it is arguable
that since clustering is a very different topic from footprint formation, it should
not be attempted to accomplish both using a single algorithm. A better solution
might be to apply some dedicated clustering algorithm first, and then derive
footprints from each cluster individually. One obvious possibility would be the
nearest neighbor (single link) cluster algorithm, which generates clusters based
on a sub-graph of the Delaunay triangulation [16]. Although not clustering al-
gorithms, the Gabriel graph [17] and the relative neighborhood graph [18] are
two other well-studied sub-graphs of the Delaunay triangulation that would be
potentially useful in characterizing the region occupied by a set of points.
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A The Swinging Arm Algorithm

Input: A finite set S of points in the plane, and a positive real number r.
Output: A footprint of S.

1. Mark all points of S as ‘available’ and ‘unvisited’.
2. Let i = 0.
3. Repeat

(a) Increase i by 1.
(b) Let Hi,0 be the available point in S with maximal y-coordinate (if there

is more than one such, choose the one with minimal x-coordinate).
(c) Let L be a line-segment of length r anchored at Hi,0 parallel to the

positive y-axis.
(d) Let j = 0.
(e) Repeat

i. Rotate L clockwise about Hi,j until either it meets another available
point in S or it returns to its starting position. In the former case, let
Hi,j+1 be the point found (if more than one, choose the one closest
to Hi,j); in the latter, let Hi,j+1 = Hi,j .
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ii. If Hi,j+1 is marked as visited, then identify the greatest k ≤ j such
Hi,j+1 = Hi,k, and mark as unavailable all points of S in the interior
of the polygon with vertices Hi,k, Hi,k+1, . . . , Hi,j .

iii. Mark Hi,j+1 as visited.
iv. Let L be a line-segment of length r anchored at Hi,j+1 and passing

through Hi,j .
v. Increase j by 1.

until Hi,j = Hi,0.
(f) Add the polygon with vertices Hi,0, Hi,1, . . . , Hi,j−1 as component Ci of

the footprint, and mark all those vertices as unavailable.
until all points in S are unavailable.

4. Return components C1, . . . , Ci.
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